Midterm Review

Topics on the Midterm

- Data Structures & Object-Oriented Design
- Run-Time Analysis
- Linear Data Structures
- The Java Collections Framework
- Recursion
- > Trees
- Priority Queues & Heaps

Data Structures So Far

- Array List
 - ☐ (Extendable) Array
- Node List
 - ☐ Singly or Doubly Linked List
- Stack
 - □ Array
 - ☐ Singly Linked List
- Queue
 - Array
 - ☐ Singly or Doubly Linked List

- Priority Queue
 - Unsorted doubly-linked list
 - Sorted doubly-linked list
 - ☐ Heap (array-based)
- Adaptable Priority Queue
 - Sorted doubly-linked list with locationaware entries
 - ☐ Heap with location-aware entries
- > Tree
 - Linked Structure
- Binary Tree
 - Linked Structure
 - Array

Topics on the Midterm

- Data Structures & Object-Oriented Design
- Run-Time Analysis
- Linear Data Structures
- ➤ The Java Collections Framework
- Recursion
- > Trees
- Priority Queues & Heaps

Data Structures & Object-Oriented Design

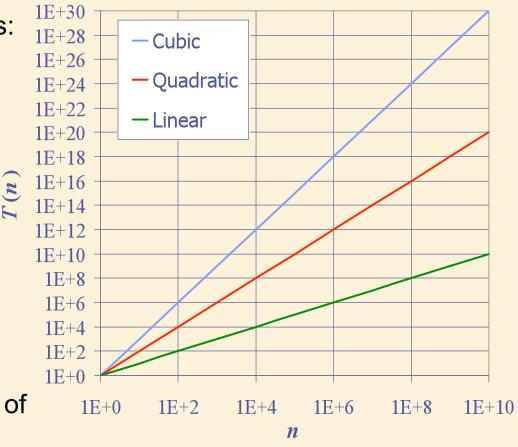
- Definitions
- Principles of Object-Oriented Design
- Hierarchical Design in Java
- Abstract Data Types & Interfaces
- Casting
- Generics
- Pseudo-Code

Software Engineering

- Software must be:
 - Readable and understandable
 - → Allows correctness to be verified, and software to be easily updated.
 - ☐ Correct and complete
 - Works correctly for all expected inputs
 - □ Robust
 - Capable of handling unexpected inputs.
 - Adaptible
 - ♦ All programs evolve over time. Programs should be designed so that re-use, generalization and modification is easy.
 - Portable
 - ♦ Easily ported to new hardware or operating system platforms.
 - Efficient
 - ♦ Makes reasonable use of time and memory resources.

Seven Important Functions

- Seven functions that often appear in algorithm analysis:
 - □ Constant ≈ 1
 - □ Logarithmic $\approx \log n$
 - □ Linear $\approx n$
 - □ N-Log-N ≈ $n \log n$
 - □ Quadratic ≈ n^2
 - □ Cubic ≈ n^3
 - □ Exponential ≈ 2^n
- In a log-log chart, the slope of the line corresponds to the growth rate of the function.



Topics on the Midterm

- Data Structures & Object-Oriented Design
- Run-Time Analysis
- Linear Data Structures
- ➤ The Java Collections Framework
- Recursion
- > Trees
- Priority Queues & Heaps

Some Math to Review

- Summations
- Logarithms and Exponents
- Existential and universal operators
- Proof techniques
- Basic probability

 existential and universal operators

$$\exists g \forall b \text{ Loves}(b, g)$$

$$\forall g \exists b \text{ Loves}(b, g)$$

properties of logarithms:

$$\log_b(xy) = \log_b x + \log_b y$$

$$\log_b(x/y) = \log_b x - \log_b y$$

$$log_b x^a = alog_b x$$

$$log_b a = log_x a / log_x b$$

properties of exponentials:

$$a^{(b+c)} = a^b a^c$$

$$a^{bc} = (a^b)^c$$

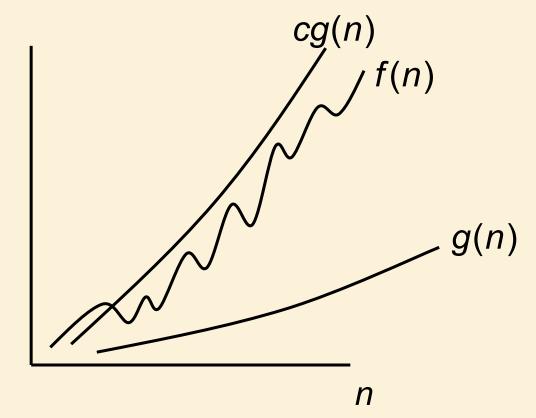
$$a^{b}/a^{c} = a^{(b-c)}$$

$$b = a \log_a b$$

$$b^c = a^{c*log}a^b$$

Definition of "Big Oh"

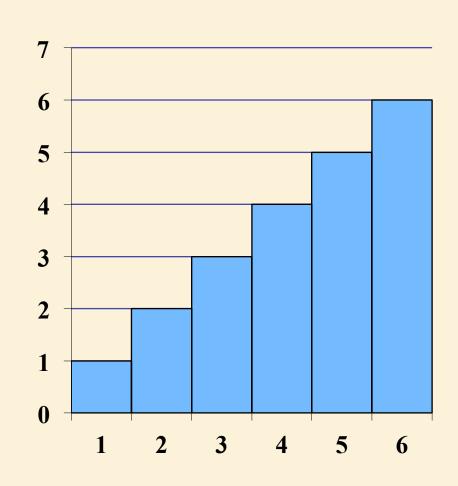
$$f(n) \in O(g(n))$$



$$\exists c, n_0 > 0 : \forall n \geq n_0, f(n) \leq cg(n)$$

Arithmetic Progression

- ➤ The running time of prefixAverages1 is O(1+2+...+n)
- The sum of the first n integers is n(n+1)/2
 - ☐ There is a simple visual proof of this fact
- Thus, algorithm prefixAverages1 runs in O(n²) time



Relatives of Big-Oh

big-Omega

• f(n) is $\Omega(g(n))$ if there is a constant c > 0and an integer constant $n_0 \ge 1$ such that $f(n) \ge c \cdot g(n)$ for $n \ge n_0$

big-Theta

■ f(n) is $\Theta(g(n))$ if there are constants $c_1 > 0$ and $c_2 > 0$ and an integer constant $n_0 \ge 1$ such that $c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$ for $n \ge n_0$

Time Complexity of an Algorithm

The time complexity of an algorithm is the *largest* time required on *any* input of size n. (Worst case analysis.)

- ➤ $O(n^2)$: For any input size $n \ge n_0$, the algorithm takes no more than cn^2 time on every input.
- $ightharpoonup \Omega(n^2)$: For any input size $n \ge n_0$, the algorithm takes at least cn² time on at least one input.
- \triangleright θ (n²): Do both.

Time Complexity of a Problem

The time complexity of a problem is the time complexity of the *fastest* algorithm that solves the problem.

- ➤ O(n²): Provide an algorithm that solves the problem in no more than this time.
 - Remember: for every input, i.e. worst case analysis!
- $\triangleright \Omega(n^2)$: Prove that no algorithm can solve it faster.
 - Remember: only need one input that takes at least this long!
- \triangleright θ (n²): Do both.

Topics on the Midterm

- Data Structures & Object-Oriented Design
- Run-Time Analysis
- Linear Data Structures
- ➤ The Java Collections Framework
- Recursion
- > Trees
- Priority Queues & Heaps

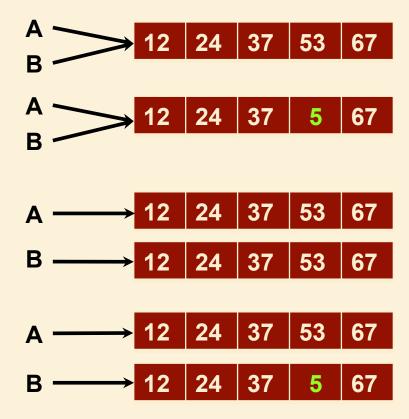
Arrays

Arrays

- Array: a sequence of indexed components with the following properties:
 - ☐ array size is fixed at the time of array's construction
 - ☐ array elements are placed contiguously in memory
 - →address of any element can be calculated directly as its offset from the beginning of the array
 - □ consequently, array components can be efficiently inspected or updated in O(1) time, using their indices
 - →randomNumber = numbers[5];

Arrays in Java

- Since an array is an object, the name of the array is actually a reference (pointer) to the place in memory where the array is stored.
 - ☐ reference to an object holds the address of the actual object
- Example [arrays as objects] int[] A={12, 24, 37, 53, 67}; int[] B=A; B[3]=5;
- Example [cloning an array]
 int[] A={12, 24, 37, 53, 67};
 int[] B=A.clone();
 B[3]=5;



Example

```
Example [ 2D array in Java = array of arrays]

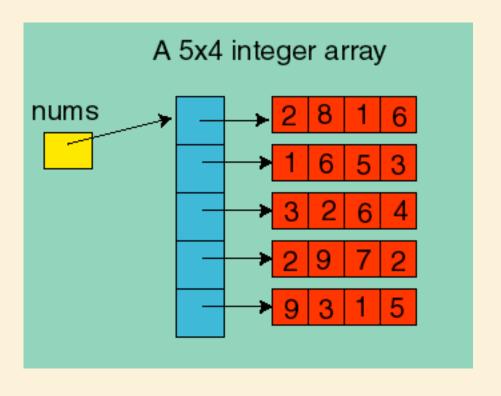
int[][] nums = new int[5][4];

int[][] nums;

nums = new int[5][];

for (int i=0; i<5; i++) {

nums[i] = new int[4];
```



Array Lists

The Array List ADT (§6.1)

- The Array List ADT extends the notion of array by storing a sequence of arbitrary objects
- An element can be accessed, inserted or removed by specifying its rank (number of elements preceding it)
- An exception is thrown if an incorrect rank is specified (e.g., a negative rank)

The Array List ADT

```
public interface IndexList<E> {
/** Returns the number of elements in this list */
public int size();
/** Returns whether the list is empty. */
public boolean isEmpty();
/** Inserts an element e to be at index I, shifting all elements after this. */
public void add(int I, E e) throws IndexOutOfBoundsException;
/** Returns the element at index I, without removing it. */
public E get(int i) throws IndexOutOfBoundsException;
/** Removes and returns the element at index I, shifting the elements after this. */
public E remove(int i) throws IndexOutOfBoundsException;
/** Replaces the element at index I with e, returning the previous element at i. */
public E set(int I, E e) throws IndexOutOfBoundsException;
```

Performance

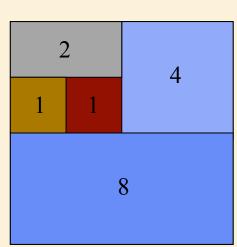
- ➤ In the array based implementation
 - \Box The space used by the data structure is O(n)
 - \Box size, is Empty, get and set run in O(1) time
 - \square add and remove run in O(n) time
- ➤ In an **add** operation, when the array is full, instead of throwing an exception, we could replace the array with a larger one.
- ➤ In fact java.util.ArrayList implements this ADT using extendable arrays that do just this.

Doubling Strategy Analysis

- ightharpoonup We replace the array $k = \log_2 n$ times
- ➤ The total time T(n) of a series of n add(o) operations is proportional to

$$n + 1 + 2 + 4 + 8 + ... + 2^k = n + 2^{k+1} - 1 = 2n - 1$$
 geometric series

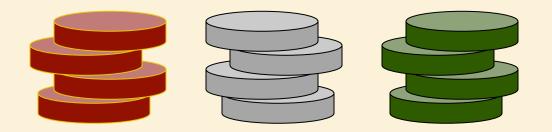
- ightharpoonup Thus T(n) is O(n)
- > The amortized time of an add operation is O(1)!



Recall:
$$\sum_{i=0}^{n} r^{i} = \frac{1-r^{n+1}}{1-r}$$

Stacks

Chapter 5.1



The Stack ADT

- The Stack ADT stores arbitrary objects
- Insertions and deletions follow the last-in first-out scheme
- Think of a spring-loaded plate dispenser
- Main stack operations:
 - push(object): inserts an element
 - object pop(): removes and returns the last inserted element

- Auxiliary stack operations:
 - □ object top(): returns the last inserted element without removing it
 - ☐ integer size(): returns the number of elements stored
 - □ boolean isEmpty(): indicates whether no elements are stored

Array-based Stack

- A simple way of implementing the Stack ADT uses an array
- We add elements from left to right
- A variable keeps track of the index of the top element

```
Algorithm size()
return t + 1

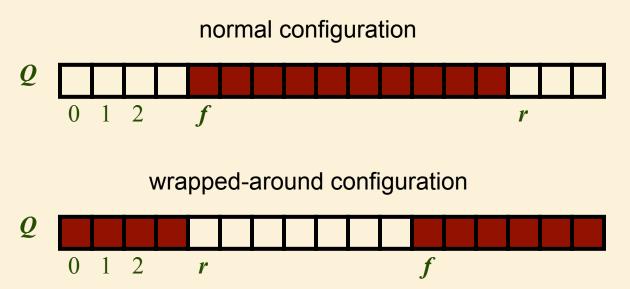
Algorithm pop()
if isEmpty() then
throw EmptyStackException
else
t ← t - 1
return S[t + 1]
```


Queues

Chapters 5.2-5.3

Array-Based Queue

- Use an array of size N in a circular fashion
- Two variables keep track of the front and rear
 - f index of the front element
 - *r* index immediately past the rear element
- Array location r is kept empty



Last Updated: February 11, 2015

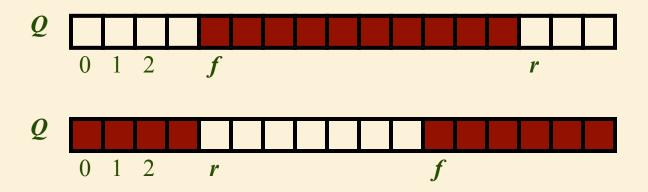
Queue Operations

We use the modulo operator (remainder of division)

```
Algorithm size()
return (N-f+r) \mod N

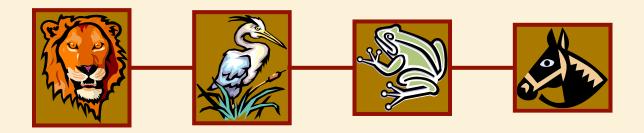
Algorithm is Empty()
return (f=r)

Note: N-f+r=(r+N)-f
```



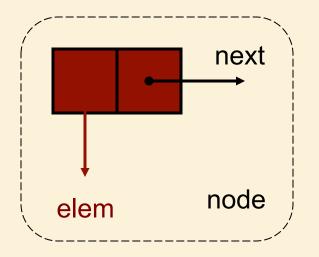
Linked Lists

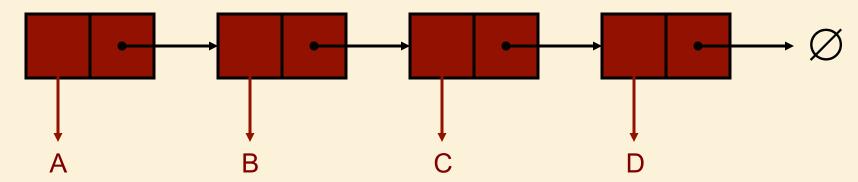
Chapters 3.2 – 3.3



Singly Linked List (§ 3.2)

- A singly linked list is a concrete data structure consisting of a sequence of nodes
- Each node stores
 - □ element
 - ☐ link to the next node





Running Time

- Adding at the head is O(1)
- Removing at the head is O(1)
- > How about tail operations?

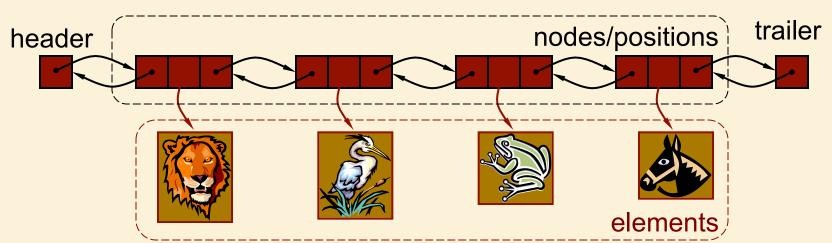
Doubly Linked List

Doubly-linked lists allow more flexible list management (constant

prev

time operations at both ends).

- Nodes store:
 - element
 - link to the previous node
 - ☐ link to the next node
- Special trailer and header (sentinel) nodes



Last Updated: February 11, 2015

next

node

elem

Topics on the Midterm

- Data Structures & Object-Oriented Design
- Run-Time Analysis
- Linear Data Structures
- > The Java Collections Framework
- Recursion
- > Trees
- Priority Queues & Heaps

Iterators

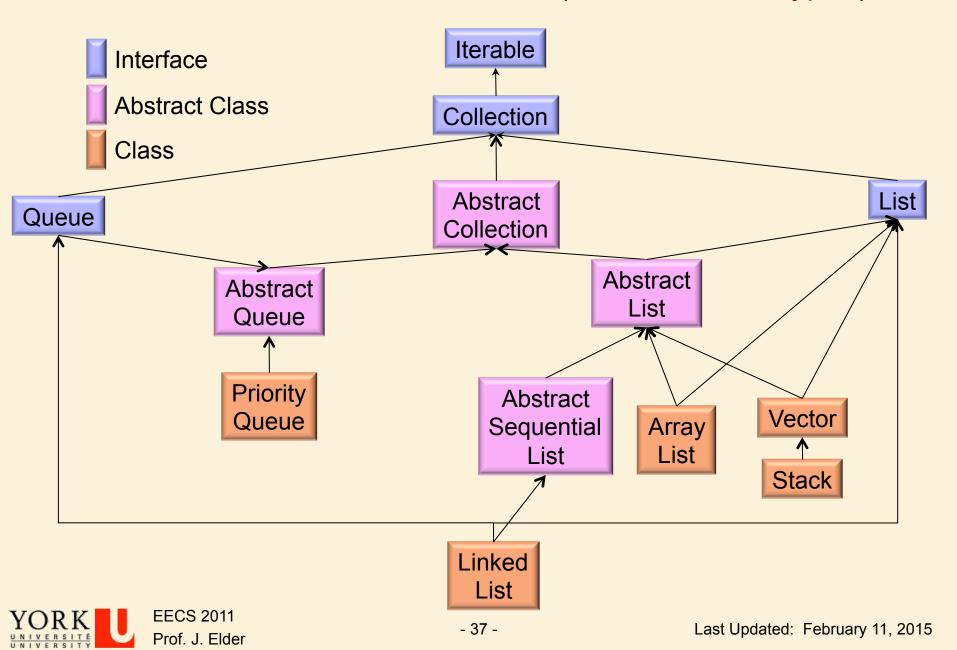
- ➤ An <u>Iterator</u> is an object that enables you to traverse through a collection and to remove elements from the collection selectively, if desired.
- You get an Iterator for a collection by calling its iterator method.
- Suppose collection is an instance of a Collection.
 Then to print out each element on a separate line:

```
Iterator<E> it = collection.iterator();
```

```
while (it.hasNext())
```

System.out.println(it.next());

The Java Collections Framework (Ordered Data Types)



Topics on the Midterm

- Data Structures & Object-Oriented Design
- Run-Time Analysis
- Linear Data Structures
- ➤ The Java Collections Framework
- > Recursion
- > Trees
- Priority Queues & Heaps

Linear Recursion Design Pattern

> Test for base cases

- Begin by testing for a set of base cases (there should be at least one).
- Every possible chain of recursive calls must eventually reach a base case, and the handling of each base case should not use recursion.

Recurse once

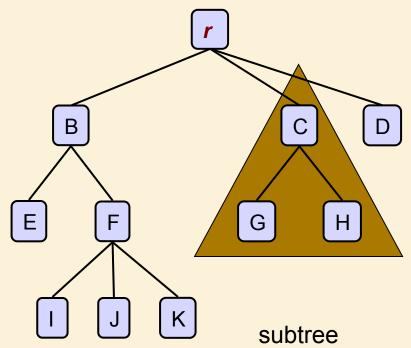
- □ Perform a single recursive call. (This recursive step may involve a test that decides which of several possible recursive calls to make, but it should ultimately choose to make just one of these calls each time we perform this step.)
- ☐ Define each possible recursive call so that it makes **progress** towards a base case.

Binary Recursion

- ➤ Binary recursion occurs whenever there are two recursive calls for each non-base case.
- > Example 1: The Fibonacci Sequence

Formal Definition of Rooted Tree

- > A rooted tree may be empty.
- Otherwise, it consists of
 - ☐ A root node *r*
 - ☐ A set of **subtrees** whose roots are the children of *r*



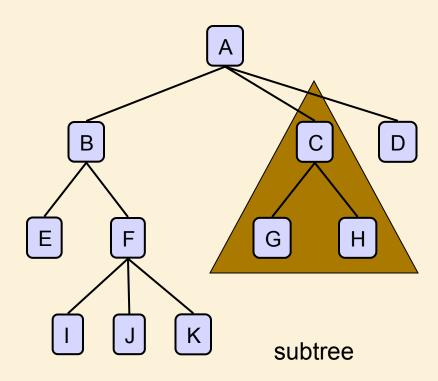
Last Updated: February 11, 2015

Topics on the Midterm

- Data Structures & Object-Oriented Design
- Run-Time Analysis
- Linear Data Structures
- ➤ The Java Collections Framework
- Recursion
- > Trees
- Priority Queues & Heaps

Tree Terminology

- Root: node without parent (A)
- Internal node: node with at least one child (A, B, C, F)
- External node (a.k.a. leaf): node without children (E, I, J, K, G, H, D)
- Ancestors of a node: parent, grandparent, grand-grandparent, etc.
- Descendant of a node: child, grandchild, grand-grandchild, etc.
- Siblings: two nodes having the same parent
- Depth of a node: number of ancestors (excluding self)
- Height of a tree: maximum depth of any node (3)
- Subtree: tree consisting of a node and its descendants



EECS 2011 Prof. J. Elder

Position ADT

- ➤ The Position ADT models the notion of place within a data structure where a single object is stored
- It gives a unified view of diverse ways of storing data, such as
 - ☐ a cell of an array
 - □ a node of a linked list
 - □ a node of a tree
- > Just one method:
 - object element(): returns the element stored at the position

Tree ADT

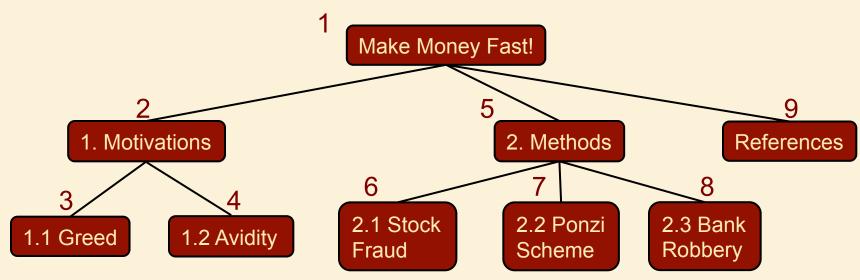
- We use positions to abstract nodes
- Generic methods:
 - ☐ integer size()
 - boolean isEmpty()
 - Iterator iterator()
 - ☐ Iterable positions()
- Accessor methods:
 - position root()
 - position parent(p)
 - positionIterator children(p)

- Query methods:
 - □ boolean isInternal(p)
 - boolean isExternal(p)
 - □ boolean isRoot(p)
- Update method:
 - □ object replace(p, o)
 - Additional update methods may be defined by data structures implementing the Tree ADT

Preorder Traversal

- A traversal visits the nodes of a tree in a systematic manner
- In a preorder traversal, a node is visited before its descendants

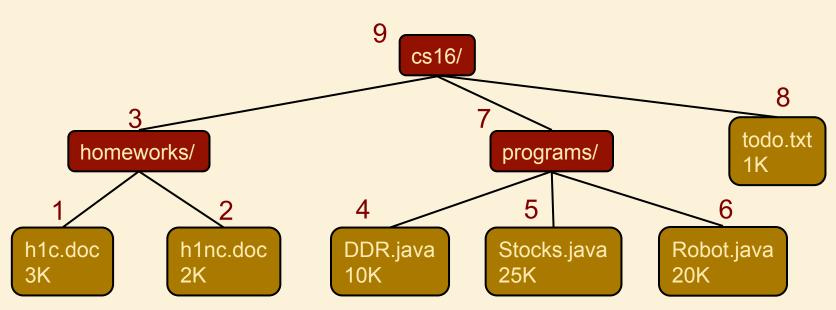
```
Algorithm preOrder(v)
visit(v)
for each child w of v
preOrder (w)
```



Postorder Traversal

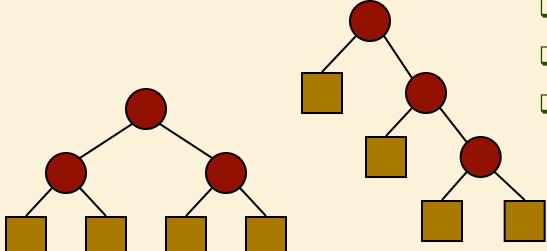
In a postorder traversal, a node is visited after its descendants

Algorithm postOrder(v)
for each child w of v
postOrder (w)
visit(v)



Properties of Proper Binary Trees

- Notation
 - **n** number of nodes
 - e number of external nodes
 - *i* number of internal nodes
 - h height



Properties:

$$\Box$$
 e = i + 1

$$\Box$$
 h \leq i

$$\Box$$
 h \leq (n - 1)/2

$$\Box$$
 e $\leq 2^h$

$$\Box$$
 h \geq log₂e

$$\square$$
 h $\ge \log_2(n+1) - 1$

BinaryTree ADT

- ➤ The BinaryTree ADT extends the Tree ADT, i.e., it inherits all the methods of the Tree ADT
- Additional methods:
 - □ position **left**(p)
 - □ position **right**(p)
 - □boolean **hasLeft**(p)
 - □boolean **hasRight**(p)
- Update methods may be defined by data structures implementing the BinaryTree ADT

Topics on the Midterm

- Data Structures & Object-Oriented Design
- Run-Time Analysis
- Linear Data Structures
- ➤ The Java Collections Framework
- Recursion
- > Trees
- Priority Queues & Heaps

Priority Queue ADT

- A priority queue stores a collection of entries
- Each entry is a pair (key, value)
- Main methods of the Priority Queue ADT
 - ☐ insert(k, x) inserts an entry with key k and value x
 - □ removeMin() removes and returns the entry with smallest key
- Additional methods
 - ☐ min() returns, but does not remove, an entry with smallest key
 - □ size(), isEmpty()
- Applications:
 - □ Process scheduling
 - Standby flyers

Entry ADT

- An entry in a priority queue is simply a keyvalue pair
- Methods:
 - key(): returns the key for this entry
 - □ value(): returns the value for this entry

```
As a Java interface:
   /**
     * Interface for a key-value
     * pair entry
    **/
   public interface Entry {
      public Object key();
      public Object value();
```

Comparator ADT

- A comparator encapsulates the action of comparing two objects according to a given total order relation
- > A generic priority queue uses an auxiliary comparator
- The comparator is external to the keys being compared
- When the priority queue needs to compare two keys, it uses its comparator
- The primary method of the Comparator ADT:
 - □ compare(a, b):
 - ♦ Returns an integer i such that
 - i < 0 if a < b
 - i = 0 if a = b
 - i > 0 if a > b
 - an error occurs if a and b cannot be compared.

Sequence-based Priority Queue

Implementation with an unsorted list

- Performance:
 - □ **insert** takes *O*(1) time since we can insert the item at the beginning or end of the sequence
 - □ removeMin and min take
 O(n) time since we have to traverse the entire sequence to find the smallest key

Implementation with a sorted list

- Performance:
 - \square insert takes O(n) time since we have to find the right place to insert the item
 - ☐ removeMin and min take
 O(1) time, since the smallest key is at the beginning

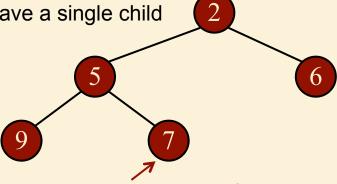
Is this tradeoff inevitable?

Heaps

- ➤ Goal:
 - □ O(log n) insertion
 - □ O(log n) removal
- Remember that O(log n) is almost as good as O(1)!
 - \Box e.g., n = 1,000,000,000 → log n \cong 30
- ➤ There are min heaps and max heaps. We will assume min heaps.

Min Heaps

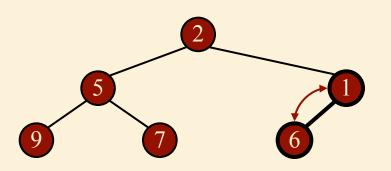
- ➤ A min heap is a binary tree storing keys at its nodes and satisfying the following properties:
 - ☐ Heap-order: for every internal node v other than the root
 - $\Leftrightarrow key(v) \ge key(parent(v))$
 - ☐ (Almost) complete binary tree: let h be the height of the heap
 - \diamond for i = 0, ..., h-1, there are 2^i nodes of depth i
 - \Rightarrow at depth h-1
 - the internal nodes are to the left of the external nodes
 - Only the rightmost internal node may have a single child

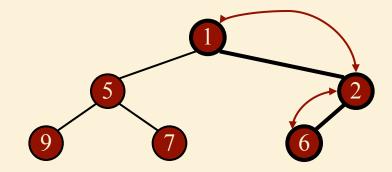


☐ The last node of a heap is the rightmost node of depth *h*

Upheap

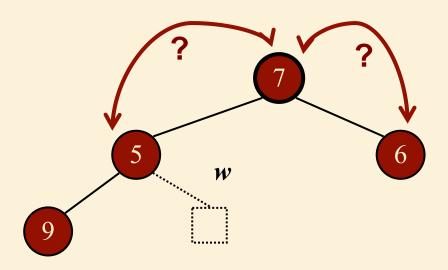
- \triangleright After the insertion of a new key k, the heap-order property may be violated
- Algorithm **upheap** restores the heap-order property by swapping *k* along an upward path from the insertion node
- ▶ Upheap terminates when the key k reaches the root or a node whose parent has a key smaller than or equal to k
- \triangleright Since a heap has height $O(\log n)$, upheap runs in $O(\log n)$ time





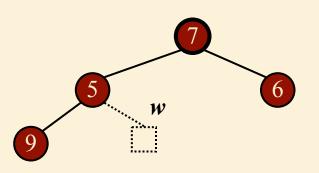
Downheap

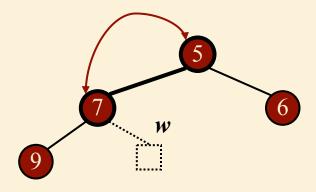
- After replacing the root key with the key k of the last node, the heap-order property may be violated
- Algorithm downheap restores the heap-order property by swapping key k along a downward path from the root
- Note that there are, in general, many possible downward paths which one do we choose?



Downheap

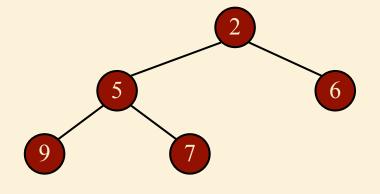
- We select the downward path through the minimum-key nodes.
- \blacktriangleright Downheap terminates when key k reaches a leaf or a node whose children have keys greater than or equal to k
- \triangleright Since a heap has height $O(\log n)$, downheap runs in $O(\log n)$ time

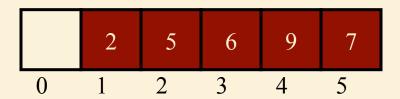




Array-based Heap Implementation

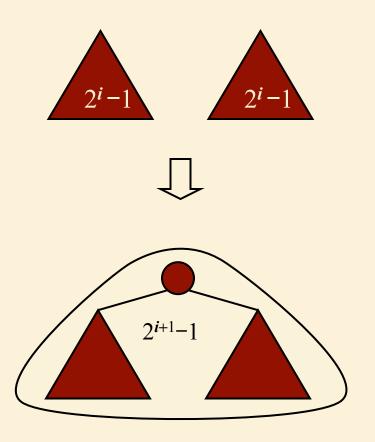
- We can represent a heap with n keys by means of an array of length n + 1
- Links between nodes are not explicitly stored
- The cell at rank 0 is not used
- The root is stored at rank 1.
- For the node at rank i
 - \Box the left child is at rank 2*i*
 - \Box the right child is at rank 2i + 1
 - ☐ the parent is at rank **floor**(i/2)
 - ☐ if 2i + 1 > n, the node has no right child
 - ☐ if 2i > n, the node is a leaf



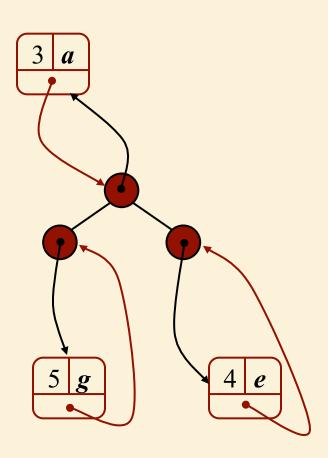


Bottom-up Heap Construction

- We can construct a heap storing n keys using a bottom-up construction with log n phases
- ▶ In phase i, pairs of heaps with 2i-1 keys are merged into heaps with 2i+1-1 keys
- Run time for construction is O(n).



Adaptable Priority Queues



Additional Methods of the Adaptable Priority Queue ADT

- remove(e): Remove from P and return entry e.
- replaceKey(e,k): Replace with k and return the old key; an error condition occurs if k is invalid (that is, k cannot be compared with other keys).
- replaceValue(e,x): Replace with x and return the old value.

Location-Aware Entries

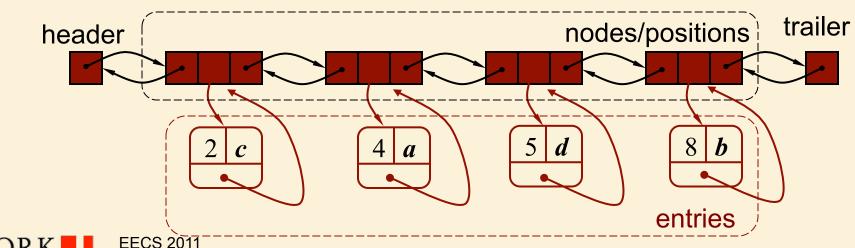
➤ A locator-aware entry identifies and tracks the location of its (key, value) object within a data structure

List Implementation

- A location-aware list entry is an object storing
 - □ key
 - □ value

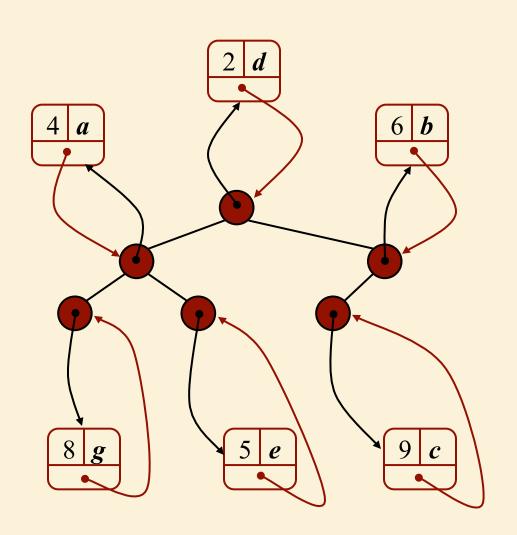
Prof. J. Elder

- position (or rank) of the item in the list
- In turn, the position (or array cell) stores the entry
- Back pointers (or ranks) are updated during swaps



Heap Implementation

- A location-aware heap entry is an object storing
 - □ key
 - value
 - position of the entry in the underlying heap
- In turn, each heap position stores an entry
- Back pointers are updated during entry swaps



Performance

➤ Times better than those achievable without location-aware entries are highlighted in red:

Method	Unsorted List	Sorted List	Heap
size, isEmpty	<i>O</i> (1)	<i>O</i> (1)	<i>O</i> (1)
insert	<i>O</i> (1)	O(n)	$O(\log n)$
min	O(n)	<i>O</i> (1)	<i>O</i> (1)
removeMin	O(n)	<i>O</i> (1)	$O(\log n)$
remove	<i>O</i> (1)	<i>O</i> (1)	$O(\log n)$
replaceKey	<i>O</i> (1)	O(n)	$O(\log n)$
replaceValue	<i>O</i> (1)	<i>O</i> (1)	<i>O</i> (1)

Topics on the Midterm

- Data Structures & Object-Oriented Design
- Run-Time Analysis
- Linear Data Structures
- ➤ The Java Collections Framework
- Recursion
- > Trees
- Priority Queues & Heaps